力扣链接:5. 最长回文子串,难度:中等。
给你一个字符串 s
,找到 s
中最长的 回文子串。
- 回文性:如果字符串向前和向后读都相同,则它满足 回文性。
- 子字符串 是字符串中连续的 非空 字符序列。
示例 1:
输入: s = "babad"
输出: "bab"
解释: "aba" 同样是符合题意的答案。
示例 2:
输入: s = "cbbd"
输出: "bb"
约束:
1 <= s.length <= 1000
s
仅由数字和英文字母组成
提示 1
How can we reuse a previously computed palindrome to compute a larger palindrome?
提示 2
If “aba” is a palindrome, is “xabax” a palindrome? Similarly is “xabay” a palindrome?
提示 3
Complexity based hint:
If we use brute-force and check whether for every start and end position a substring is a palindrome we have O(n2) start - end pairs and O(n) palindromic checks. Can we reduce the time for palindromic checks to O(1) by reusing some previous computation.
思路
“动态规划”的模式
“动态规划”分为五步
- 确定数组
dp
的每个值代表的含义。 - 初始化数组
dp
的值。 - 根据一个示例,“按顺序”填入
dp
网格数据。 - 根据
dp
网格数据,推导出“递推公式”。 - 写出程序,并打印
dp
数组,不合预期就调整。
细说这五步
- 确定数组
dp
的每个值代表的含义。- 先确定
dp
是一维数组还是二维数组。“一维滚动数组”意味着每次迭代时都会覆盖数组的值。大多时候,用“一维滚动数组”代替“二维数组”可以简化代码;但有些题目,比如要操作“两个对等数组”,为了理解方便,还是使用“二维数组”。 - 尝试使用问题所求的
返回值
的含义作为dp[i]
(一维)或dp[i][j]
(二维)的含义,约60%的概率能行。如果不行,再尝试其他含义。 - 设计上尽量考虑保存更丰富的信息,重复信息只在某个
dp[i]
中保存一次就够了。 - 使用简化的含义。如果用
布尔值
可以解决问题,就不要用数值
。
- 先确定
- 初始化数组
dp
的值。dp
的值涉及两个层面:dp
的长度。通常是:条件数组长度加1
或条件数组长度
。dp[i]
或dp[i][j]
的值。dp[0]
或dp[0][0]
有时需要特殊处理。
- 根据一个示例,“按顺序”填入
dp
网格数据。- “递推公式”是“动态规划”算法的核心。但“递推公式”是隐晦的,想得到它,就需要制表,用数据启发自己。
- 如果原示例不够好,需要自己重新设计一个。
- 根据示例,填入
dp
网格数据,需要“按顺序”填,这是很重要的,因为它决定了代码的遍历顺序。 - 大多时候,从左到右,从上到下。但有时需要从右向左、由下而上、从中间向右(或左),如“回文串”问题。有时,还需要一行遍历两次,先正向,再反向。
- 当顺序决定对了,起点就决定好了,从起点出发,“按顺序”填写
dp
网格数据,这也是在模拟程序处理的过程。 - 在此过程中,您将获得写出“递推公式”的灵感。如果您已经能推导出公式,不需要填完网格。
- 根据
dp
网格数据,推导出“递推公式”。- 有三个特别的位置需要注意:
dp[i - 1][j - 1]
、dp[i - 1][j]
和dp[i][j - 1]
,当前的dp[i][j]
往往取决于它们。 - 操作“两个对等数组”时,因为对称性,我们可能需要同时使用
dp[i - 1][j]
和dp[i][j - 1]
。
- 有三个特别的位置需要注意:
- 写出程序,并打印
dp
数组,不合预期就调整。- 重点分析那些不合预期的数值。
读完了上面的内容,是不是感觉“动态规划”也没有那么难了?试着解出这道题吧。🤗
复杂度
时间复杂度
空间复杂度
Ruby #
# @param {String} s
# @return {String}
def longest_palindrome(s)
longest = s[0]
s = s.chars.join("#")
s.size.times do |i|
j = 1
while j <= i and i + j < s.size
break if s[i - j] != s[i + j]
if s[i - j] == '#'
j += 1
next
end
length = j * 2 + 1
if length > longest.size
longest = s[i - j..i + j]
end
j += 1
end
end
longest.gsub('#', '')
end