Fuck LeetCode > Dynamic Programming > 5. Longest Palindromic Substring > Solved in Ruby > Contribute or Repost
LeetCode link: 5. Longest Palindromic Substring, difficulty: Medium.
Given a string s
, return the longest palindromic substring in s
.
- A string is palindromic if it reads the same forward and backward.
- A substring is a contiguous non-empty sequence of characters within a string.
Example 1:
Input: s = "babad"
Output: "bab"
Explanation: "aba" is also a valid answer.
Example 2:
Input: s = "cbbd"
Output: "bb"
Constraints:
1 <= s.length <= 1000
s
consist of only digits and English letters.
Hint 1
How can we reuse a previously computed palindrome to compute a larger palindrome?
Hint 2
If “aba” is a palindrome, is “xabax” a palindrome? Similarly is “xabay” a palindrome?
Hint 3
Complexity based hint:
If we use brute-force and check whether for every start and end position a substring is a palindrome we have O(n2) start - end pairs and O(n) palindromic checks. Can we reduce the time for palindromic checks to O(1) by reusing some previous computation.
Intuition
Pattern of "Dynamic Programming"
"Dynamic programming" is divided into five steps
- Determine the meaning of each value of the array
dp
. - Initialize the value of the array
dp
. - Fill in the
dp
grid data "in order" according to an example. - Based on the
dp
grid data, derive the "recursive formula". - Write a program and print the
dp
array. If it is not as expected, adjust it.
Detailed description of these five steps
- Determine the meaning of each value of the array
dp
.- First determine whether
dp
is a one-dimensional array or a two-dimensional array. Aone-dimensional rolling array
means that the values of the array are overwritten at each iteration. Most of the time, usingone-dimensional rolling array
instead oftwo-dimensional array
can simplify the code; but for some problems, such as operating "two swappable arrays", for the sake of ease of understanding, it is better to usetwo-dimensional array
. - Try to use the meaning of the
return value
required by the problem as the meaning ofdp[i]
(one-dimensional) ordp[i][j]
(two-dimensional). It works about 60% of the time. If it doesn't work, try other meanings. - Try to save more information in the design. Repeated information only needs to be saved once in a
dp[i]
. - Use simplified meanings. If the problem can be solved with
boolean value
, don't usenumeric value
.
- First determine whether
- Initialize the value of the array
dp
. The value ofdp
involves two levels:- The length of
dp
. Usually:condition array length plus 1
orcondition array length
. - The value of
dp[i]
ordp[i][j]
.dp[0]
ordp[0][0]
sometimes requires special treatment.
- The length of
- Fill in the
dp
grid data "in order" according to an example.- The "recursive formula" is the core of the "dynamic programming" algorithm. But the "recursive formula" is obscure. If you want to get it, you need to make a table and use data to inspire yourself.
- If the original example is not good enough, you need to redesign one yourself.
- According to the example, fill in the
dp
grid data "in order", which is very important because it determines the traversal order of the code. - Most of the time, from left to right, from top to bottom. But sometimes it is necessary to traverse from right to left, from bottom to top, from the middle to the right (or left), such as the "palindrome" problems. Sometimes, it is necessary to traverse a line twice, first forward and then backward.
- When the order is determined correctly, the starting point is determined. Starting from the starting point, fill in the
dp
grid data "in order". This order is also the order in which the program processes. - In this process, you will get inspiration to write a "recursive formula". If you can already derive the formula, you do not need to complete the grid.
- Based on the
dp
grid data, derive the "recursive formula".- There are three special positions to pay attention to:
dp[i - 1][j - 1]
,dp[i - 1][j]
anddp[i][j - 1]
, the currentdp[i][j]
often depends on them. - When operating "two swappable arrays", due to symmetry, we may need to use
dp[i - 1][j]
anddp[i][j - 1]
at the same time.
- There are three special positions to pay attention to:
- Write a program and print the
dp
array. If it is not as expected, adjust it.- Focus on analyzing those values that are not as expected.
After reading the above, do you feel that "dynamic programming" is not that difficult? Try to solve this problem. 🤗
Complexity
Time complexity
Space complexity
Ruby #
# @param {String} s
# @return {String}
def longest_palindrome(s)
longest = s[0]
s = s.chars.join("#")
s.size.times do |i|
j = 1
while j <= i and i + j < s.size
break if s[i - j] != s[i + j]
if s[i - j] == '#'
j += 1
next
end
length = j * 2 + 1
if length > longest.size
longest = s[i - j..i + j]
end
j += 1
end
end
longest.gsub('#', '')
end