力扣链接:209. 长度最小的子数组,难度:中等。
给定一个含有 n
个正整数的数组和一个正整数 target
。
找出该数组中满足其总和大于等于 target
的长度最小的 子数组 [numsl, numsl+1, ..., numsr-1, numsr]
,并返回其长度。如果不存在符合条件的子数组,返回 0
。
子数组 是数组中连续的 非空 元素序列。
示例 1:
输入: target = 7, nums = [2,3,1,2,4,3]
输出: 2
解释: 子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入: target = 4, nums = [1,4,4]
输出: 1
解释: target = 11, nums = [1,1,1,1,1,1,1,1]
示例 3:
输入: target = 11, nums = [1,1,1,1,1,1,1,1]
输出: 0
约束:
1 <= target <= 10^9
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^4
步骤
遍历
nums
数组,元素的index
可命名为fastIndex
。虽然不起眼,但这是快慢指针技术
最重要的逻辑。请最好记住它。sum += nums[fast_index]
.var minLength = Integer.MAX_VALUE; var sum = 0; var slowIndex = 0; for (var fastIndex = 0; fastIndex < nums.length; fastIndex++) { // 本行是`快慢指针技术`最重要的逻辑 sum += nums[fastIndex]; // 1 } return minLength;
控制
slowIndex
。var minLength = Integer.MAX_VALUE; var sum = 0; var slowIndex = 0; for (var fastIndex = 0; fastIndex < nums.length; fastIndex++) { sum += nums[fastIndex]; while (sum >= target) { // 1 minLength = Math.min(minLength, fastIndex - slowIndex + 1); // 2 sum -= nums[slowIndex]; // 3 slowIndex++; // 4 } } if (minLength == Integer.MAX_VALUE) { // 5 return 0; // 6 } return minLength;
复杂度
时间复杂度
O(N)
空间复杂度
O(1)
Java #
class Solution {
public int minSubArrayLen(int target, int[] nums) {
var minLength = Integer.MAX_VALUE;
var sum = 0;
var slowIndex = 0;
for (var fastIndex = 0; fastIndex < nums.length; fastIndex++) { // This line is the most important. You'd better memorize it.
sum += nums[fastIndex];
while (sum >= target) {
minLength = Math.min(minLength, fastIndex - slowIndex + 1);
sum -= nums[slowIndex];
slowIndex++;
}
}
if (minLength == Integer.MAX_VALUE) {
return 0;
}
return minLength;
}
}
Python #
class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
min_length = float('inf')
sum_ = 0
slow_index = 0
for fast_index, num in enumerate(nums): # This line is the most important. You'd better memorize it.
sum_ += num
while sum_ >= target:
min_length = min(min_length, fast_index - slow_index + 1)
sum_ -= nums[slow_index]
slow_index += 1
if min_length == float('inf'):
return 0
return min_length
JavaScript #
var minSubArrayLen = function (target, nums) {
let minLength = Number.MAX_SAFE_INTEGER
let sum = 0
let slowIndex = 0
nums.forEach((num, fastIndex) => { // This line is the most important. You'd better memorize it.
sum += num
while (sum >= target) {
minLength = Math.min(minLength, fastIndex - slowIndex + 1)
sum -= nums[slowIndex]
slowIndex++
}
})
if (minLength == Number.MAX_SAFE_INTEGER) {
return 0
}
return minLength
};
C# #
public class Solution
{
public int MinSubArrayLen(int target, int[] nums)
{
int minLength = Int32.MaxValue;
int sum = 0;
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.Length; fastIndex++) // This line is the most important. You'd better memorize it.
{
sum += nums[fastIndex];
while (sum >= target)
{
minLength = Math.Min(minLength, fastIndex - slowIndex + 1);
sum -= nums[slowIndex];
slowIndex++;
}
}
if (minLength == Int32.MaxValue)
return 0;
return minLength;
}
}
Go #
func minSubArrayLen(target int, nums []int) int {
minLength := math.MaxInt32
sum := 0
slowIndex := 0
for fastIndex := 0; fastIndex < len(nums); fastIndex++ { // This line is the most important. You'd better memorize it.
sum += nums[fastIndex]
for sum >= target {
minLength = min(minLength, fastIndex - slowIndex + 1)
sum -= nums[slowIndex]
slowIndex++
}
}
if minLength == math.MaxInt32 {
return 0
}
return minLength
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
Ruby #
# @param {Integer} target
# @param {Integer[]} nums
# @return {Integer}
def min_sub_array_len(target, nums)
min_length = Float::INFINITY
sum = 0
slow_index = 0
nums.each_with_index do |num, fast_index| # This line is the most important. You'd better memorize it.
sum += num
while sum >= target
min_length = [min_length, fast_index - slow_index + 1].min
sum -= nums[slow_index]
slow_index += 1
end
end
min_length == Float::INFINITY ? 0 : min_length
end
C++ #
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int min_length = INT_MAX;
int sum = 0;
int slow_index = 0;
for (int fast_index = 0; fast_index < nums.size(); fast_index++) {
sum += nums[fast_index];
while (sum >= target) {
min_length = min(min_length, fast_index - slow_index + 1);
sum -= nums[slow_index];
slow_index++;
}
}
if (min_length == INT_MAX) {
return 0;
}
return min_length;
}
};