# 225. 用队列实现栈 - 力扣题解最佳实践 访问原文链接:[225. 用队列实现栈 - 力扣题解最佳实践](https://leetcoder.net/zh/leetcode/225-implement-stack-using-queues),体验更佳! 力扣链接:[225. 用队列实现栈](https://leetcode.cn/problems/implement-stack-using-queues), 难度:**简单**。 ## 力扣“225. 用队列实现栈”问题描述 请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(`push`、`top`、`pop` 和 `empty`)。 实现 `MyStack` 类: - `void push(int x)` 将元素 `x` 压入栈顶。 - `int pop()` 移除并返回栈顶元素。 - `int top()` 返回栈顶元素。 - `boolean empty()` 如果栈是空的,返回 `true`;否则,返回 `false`。 **注意**: - 你只能使用队列的标准操作 —— 也就是 `push to back`、`peek/pop from front`、`size` 和 `is empty` 这些操作。 - 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。 ### [示例 1] **输入**: `["MyStack", "push", "push", "top", "pop", "empty"] [[], [1], [2], [], [], []]` **输出**: `[null, null, null, 2, 2, false]` **解释**:

MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False

### [约束] - `1 <= x <= 9` - 最多调用 `100` 次 `push`、`pop`、`top` 和 `empty` - 每次调用 `pop` 和 `top` 都保证栈不为空 **进阶**:你能否仅用一个队列来实现栈。 ## 思路 1 1. 使用的两个队列,一个队列用于输入和输出,另一个队列用于临时存储。 2. 用队列模拟栈的功能,有两种方案可供选择: 1. 方案一:简化`pop()`和`top()`操作,复杂化`push(x)`操作。`push(x)`时,需要费力地把`x`插入到队列头部。 2. 方案二:简化`push(x)`操作,复杂化`pop()`和`top()`操作。`pop()`或`top()`时,需要费力找到最后一个数据。 3. 方案一优点:代码量更少,因为它只需要复杂化一个方法,而方案二要复杂化两个方法;从逻辑上更容易理解,因为它把队列中的数据按`后入先出`的规则排好序了。 ## 复杂度 - 时间复杂度: `push O(n), pop O(1), top O(1), empty O(1)`. - 空间复杂度: `O(n)`. ## Python ```python class MyStack: def __init__(self): self.queue = deque() self.queue_temp = deque() def push(self, x: int) -> None: # Move all 'queue' items to 'queue_temp'. while self.queue: self.queue_temp.append( self.queue.popleft() ) # Emplaced 'x' at the first of 'queue' because 'queue' is empty. self.queue.append(x) # Move all 'queue_temp' items back to 'queue'. while self.queue_temp: self.queue.append( self.queue_temp.popleft() ) def pop(self) -> int: return self.queue.popleft() def top(self) -> int: return self.queue[0] def empty(self) -> bool: return not self.queue ``` ## C++ ```cpp class MyStack { private: queue queue_; queue queue_temp_; public: MyStack() {} void push(int x) { // Step 1: Move all existing elements from main queue_ to temp_queue_ while (!queue_.empty()) { queue_temp_.push(queue_.front()); queue_.pop(); } // Step 2: Add the new element to the now-empty main queue_ // This ensures the newest element is at the front (LIFO behavior) queue_.push(x); // Step 3: Move all elements from temp_queue_ back to main queue_ // This places all previous elements behind the new element while (!queue_temp_.empty()) { queue_.push(queue_temp_.front()); queue_temp_.pop(); } } int pop() { int val = queue_.front(); queue_.pop(); return val; } int top() { return queue_.front(); } bool empty() { return queue_.empty(); } }; ``` ## Go ```go type MyStack struct { // Main queue that stores elements in stack order queue []int // Temporary queue used during push operations queueTemp []int } func Constructor() MyStack { return MyStack{ queue: []int{}, queueTemp: []int{}, } } func (this *MyStack) Push(x int) { // Step 1: Move all existing elements from main queue to temp queue for len(this.queue) > 0 { // Remove from front and add to temp queue this.queueTemp = append(this.queueTemp, this.queue[0]) this.queue = this.queue[1:] } // Step 2: Add the new element to the now-empty main queue // This ensures the newest element is at the front (LIFO behavior) this.queue = append(this.queue, x) // Step 3: Move all elements from temp queue back to main queue // This places all previous elements behind the new element for len(this.queueTemp) > 0 { // Remove from front and add to main queue this.queue = append(this.queue, this.queueTemp[0]) this.queueTemp = this.queueTemp[1:] } } func (this *MyStack) Pop() int { val := this.queue[0] this.queue = this.queue[1:] return val } func (this *MyStack) Top() int { return this.queue[0] } func (this *MyStack) Empty() bool { return len(this.queue) == 0 } ``` ## Ruby ```ruby class MyStack def initialize @queue = [] # Main queue that stores elements in stack order @queue_temp = [] # Temporary queue used during push operations end def push(x) # Step 1: Move all existing elements from main queue to temp queue while !@queue.empty? @queue_temp.push(@queue.shift) end # Step 2: Add the new element to the now-empty main queue # This ensures the newest element is at the front (LIFO behavior) @queue.push(x) # Step 3: Move all elements from temp queue back to main queue # This places all previous elements behind the new element while !@queue_temp.empty? @queue.push(@queue_temp.shift) end end def pop @queue.shift end def top @queue.first end def empty @queue.empty? end end ``` ## JavaScript ```javascript var MyStack = function () { this.queue = [] this.queueTemp = [] }; MyStack.prototype.push = function (x) { while (this.queue.length > 0) { this.queueTemp.push( this.queue.shift() // remove from head ) } this.queue.push(x) while (this.queueTemp.length > 0) { this.queue.push( this.queueTemp.shift() // remove from head ) } }; MyStack.prototype.pop = function () { return this.queue.shift() // remove from head }; MyStack.prototype.top = function () { return this.queue[0] }; MyStack.prototype.empty = function () { return this.queue.length === 0 }; ``` ## Java ```java class MyStack { private Queue queue; private Queue queueTemp; public MyStack() { queue = new LinkedList<>(); // main queue queueTemp = new LinkedList<>(); } public void push(int x) { // Move all elements from main queue to temporary queue while (!queue.isEmpty()) { queueTemp.offer( queue.poll() // Remove from front (standard queue operation) ); } // Add the new element to the now-empty main queue // This will be the first element to be removed (stack's top) queue.offer(x); // Move all elements back from temporary queue to main queue // This ensures newest elements are at the front of the queue while (!queueTemp.isEmpty()) { queue.offer( queueTemp.poll() // Remove from front (standard queue operation) ); } } public int pop() { return queue.poll(); } public int top() { return queue.peek(); } public boolean empty() { return queue.isEmpty(); } } ``` ## C# ```csharp public class MyStack { private Queue queue; // main queue private Queue queueTemp; public MyStack() { queue = new Queue(); queueTemp = new Queue(); } public void Push(int x) { // Move all elements from main queue to temporary queue while (queue.Count > 0) { queueTemp.Enqueue( queue.Dequeue() ); } // Add the new element to the now-empty main queue // This will be the first element to be removed (stack's top) queue.Enqueue(x); // Move all elements back from temporary queue to main queue // This ensures newest elements are at the front of the queue while (queueTemp.Count > 0) { queue.Enqueue( queueTemp.Dequeue() ); } } public int Pop() { return queue.Dequeue(); } public int Top() { return queue.Peek(); } public bool Empty() { return queue.Count == 0; } } ``` ## Other languages ```java // Welcome to create a PR to complete the code of this language, thanks! ``` ## 思路 2 1. 使用的两个队列,一个队列用于输入和输出,另一个队列用于临时存储。 2. 用队列模拟栈的功能,有两种方案可供选择: 1. 方案一:简化`pop()`和`top()`操作,复杂化`push(x)`操作。`push(x)`时,需要费力地把`x`插入到队列头部。 2. 方案二:简化`push(x)`操作,复杂化`pop()`和`top()`操作。`pop()`或`top()`时,需要费力找到最后一个数据。 3. 本文主要介绍`方案二`,方便读者对比这两个方案。 ## 复杂度 - 时间复杂度: `push O(1), pop O(n), top O(n), empty O(1)`. - 空间复杂度: `O(n)`. ## Python ```python class MyStack: def __init__(self): self.queue = deque() self.queue_temp = deque() def push(self, x: int) -> None: self.queue.append(x) def pop(self) -> int: while len(self.queue) > 1: self.queue_temp.append( self.queue.popleft() ) value = self.queue.popleft() while self.queue_temp: self.queue.append( self.queue_temp.popleft() ) return value def top(self) -> int: value = None while self.queue: value = self.queue.popleft() self.queue_temp.append(value) while self.queue_temp: self.queue.append( self.queue_temp.popleft() ) return value def empty(self) -> bool: return not self.queue ``` ## Other languages ```java // Welcome to create a PR to complete the code of this language, thanks! ``` ## 思路 3 - 可以只用一个队列实现栈。改动只在`push`方法。只需要想办法不借助另一个`queue_temp`,把`x`插入到队列的头部。 - 在实现`push`方法时,先`queue.push(x)`,这样,`x`就被插入到了队列尾部,但我们需要把`x`放到队列的头部。 - 把`x`前面的所有数据依次出队列,再入队列,就可以了。 - 执行`queue.length - 1`次`queue.push(queue.pop())`即可。 ## 复杂度 - 时间复杂度: `push O(n), pop O(1), top O(1), empty O(1)`. - 空间复杂度: `O(n)`. ## JavaScript ```javascript var MyStack = function () { this.queue = [] }; MyStack.prototype.push = function (x) { this.queue.push(x) _.times( this.queue.length - 1, () => this.queue.push(this.queue.shift()) ) }; MyStack.prototype.pop = function () { return this.queue.shift() }; MyStack.prototype.top = function () { return this.queue[0] }; MyStack.prototype.empty = function () { return this.queue.length === 0 }; ``` ## Python ```python from collections import deque class MyStack: def __init__(self): self.queue = deque() def push(self, x: int) -> None: self.queue.append(x) # Rotate the queue to put the new element at the front # This is done by moving all existing elements to the back for _ in range(len(self.queue) - 1): self.queue.append( self.queue.popleft() ) def pop(self) -> int: return self.queue.popleft() def top(self) -> int: return self.queue[0] def empty(self) -> bool: return not self.queue ``` ## C++ ```cpp class MyStack { private: queue q_; public: MyStack() {} void push(int x) { q_.push(x); // Rotate the queue to put the new element at the front // This is done by moving all existing elements to the back for (int i = 0; i < q_.size() - 1; i++) { q_.push(q_.front()); // Add front element to back q_.pop(); // Remove from front } } int pop() { int top = q_.front(); q_.pop(); return top; } int top() { return q_.front(); } bool empty() { return q_.empty(); } }; ``` ## Go ```go type MyStack struct { queue []int } func Constructor() MyStack { return MyStack{ queue: make([]int, 0), } } func (this *MyStack) Push(x int) { // Add the new element to the queue this.queue = append(this.queue, x) // Rotate the queue to put the new element at the front // This is done by moving all existing elements to the back for i := 0; i < len(this.queue) - 1; i++ { // Move first element to the back this.queue = append(this.queue, this.queue[0]) this.queue = this.queue[1:] } } func (this *MyStack) Pop() int { // Remove and return the first element (stack's top) top := this.queue[0] this.queue = this.queue[1:] return top } func (this *MyStack) Top() int { return this.queue[0] } func (this *MyStack) Empty() bool { return len(this.queue) == 0 } ``` ## Ruby ```ruby class MyStack def initialize @queue = [] end def push(x) @queue.push(x) # Rotate the queue to put the new element at the front # This is done by moving all existing elements to the back (@queue.length - 1).times do @queue.push(@queue.shift) # Move first element to the back end end def pop @queue.shift end def top @queue.first end def empty @queue.empty? end end ``` ## Java ```java import java.util.LinkedList; import java.util.Queue; class MyStack { private Queue queue; public MyStack() { queue = new LinkedList<>(); } public void push(int x) { queue.offer(x); // Rotate the queue to put the new element at the front // This is done by moving all existing elements to the back for (int i = 0; i < queue.size() - 1; i++) { queue.offer(queue.poll()); // Move first element to the back } } public int pop() { return queue.poll(); } public int top() { return queue.peek(); } public boolean empty() { return queue.isEmpty(); } } ``` ## C# ```csharp using System.Collections.Generic; public class MyStack { private Queue queue; public MyStack() { queue = new Queue(); } public void Push(int x) { queue.Enqueue(x); // Rotate the queue to put the new element at the front // This is done by moving all existing elements to the back for (int i = 0; i < queue.Count - 1; i++) { queue.Enqueue(queue.Dequeue()); // Move first element to the back } } public int Pop() { return queue.Dequeue(); } public int Top() { return queue.Peek(); } public bool Empty() { return queue.Count == 0; } } ``` ## Other languages ```java // Welcome to create a PR to complete the code of this language, thanks! ``` 亲爱的力扣人,为了您更好的刷题体验,请访问 [leetcoder.net](https://leetcoder.net/zh)。 本站敢称力扣题解最佳实践,终将省你大量刷题时间! 原文链接:[225. 用队列实现栈 - 力扣题解最佳实践](https://leetcoder.net/zh/leetcode/225-implement-stack-using-queues). GitHub 仓库: [f*ck-leetcode](https://github.com/fuck-leetcode/fuck-leetcode).