力扣链接:707. 设计链表,难度:中等。
你可以选择使用单链表或者双链表,设计并实现自己的链表。
单链表中的节点应该具备两个属性:val
和 next
。val
是当前节点的值,next
是指向下一个节点的指针/引用。
如果是双向链表,则还需要属性 prev
以指示链表中的上一个节点。假设链表中的所有节点下标从 0 开始。
实现 MyLinkedList
类:
MyLinkedList()
初始化MyLinkedList
对象。int get(int index)
获取链表中下标为index
的节点的值。如果下标无效,则返回-1
。void addAtHead(int val)
将一个值为val
的节点插入到链表中第一个元素之前。在插入完成后,新节点会成为链表的第一个节点。void addAtTail(int val)
将一个值为val
的节点追加到链表中作为链表的最后一个元素。void addAtIndex(int index, int val)
将一个值为val
的节点插入到链表中下标为index
的节点之前。如果index
等于链表的长度,那么该节点会被追加到链表的末尾。如果 index 比长度更大,该节点将 不会插入 到链表中。void deleteAtIndex(int index)
如果下标有效,则删除链表中下标为index
的节点。
示例 1:
输入: ["MyLinkedList", "addAtHead", "addAtTail", "addAtIndex", "get", "deleteAtIndex", "get"] [[], [1], [3], [1, 2], [1], [1], [1]]
输出: [null, null, null, null, 2, null, 3]
解释:
MyLinkedList myLinkedList = new MyLinkedList();
myLinkedList.addAtHead(1);
myLinkedList.addAtTail(3);
myLinkedList.addAtIndex(1, 2); // 链表变为 1->2->3
myLinkedList.get(1); // 返回 2
myLinkedList.deleteAtIndex(1); // 现在,链表变为 1->3
myLinkedList.get(1); // 返回 3
约束:
0 <= index, val <= 1000
- 请不要使用内置的 LinkedList 库。
- 调用
get
、addAtHead
、addAtTail
、addAtIndex
和deleteAtIndex
的次数不超过2000
。
思路
在做本题前,建议先完成较简单的相关题目 19. 删除链表的倒数第 N 个结点。
本题可以全面考察候选人对链表的掌握程度,以下几点需要重视:
- 最好使用一个
dummyHead
节点做为链表入口。 - 最好使用一个新的
ListNode
类,这样,dummyHead
就不用和val
、next
混在一起。 - 先实现容易的方法,顺序为
addAtHead
,addAtTail
,addAtIndex
,deleteAtIndex
,get
。
复杂度
时间复杂度
O(N * N)
空间复杂度
O(N)
Java #
class ListNode {
int val;
ListNode next;
ListNode(int val) {
this.val = val;
}
}
class MyLinkedList {
private ListNode dummyHead = new ListNode(0);
public MyLinkedList() {}
public int get(int index) {
var node = dummyHead.next;
var i = 0;
while (node != null && i < index) {
node = node.next;
i += 1;
}
if (i == index && node != null) {
return node.val;
}
return -1;
}
public void addAtHead(int val) {
var node = new ListNode(val);
node.next = dummyHead.next;
dummyHead.next = node;
}
public void addAtTail(int val) {
var node = dummyHead;
while (node.next != null) {
node = node.next;
}
node.next = new ListNode(val);
}
public void addAtIndex(int index, int val) {
var node = dummyHead;
var i = 0;
while (node.next != null && i < index) {
node = node.next;
i += 1;
}
if (i == index) {
var newNode = new ListNode(val);
newNode.next = node.next;
node.next = newNode;
}
}
public void deleteAtIndex(int index) {
var node = dummyHead;
var i = 0;
while (node.next != null && i < index) {
node = node.next;
i += 1;
}
if (i == index && node.next != null) {
node.next = node.next.next;
}
}
}
Python #
class ListNode:
def __init__(self, val=None):
self.val = val
self.next = None
class MyLinkedList:
def __init__(self):
self.dummy_head = ListNode()
def get(self, index: int) -> int:
node = self.dummy_head.next
i = 0
while node and i < index:
node = node.next
i += 1
if i == index and node:
return node.val
return -1
def addAtHead(self, val: int) -> None:
node = ListNode(val)
node.next = self.dummy_head.next
self.dummy_head.next = node
def addAtTail(self, val: int) -> None:
node = self.dummy_head
while node.next:
node = node.next
node.next = ListNode(val)
def addAtIndex(self, index: int, val: int) -> None:
node = self.dummy_head
i = 0
while node.next and i < index:
node = node.next
i += 1
if i == index:
new_node = ListNode(val)
new_node.next = node.next
node.next = new_node
def deleteAtIndex(self, index: int) -> None:
node = self.dummy_head
i = 0
while node.next and i < index:
node = node.next
i += 1
if i == index and node.next:
node.next = node.next.next
JavaScript #
class ListNode {
constructor(val) {
this.val = val
this.next = null
}
}
var MyLinkedList = function () {
this.dummyHead = new ListNode(0)
};
MyLinkedList.prototype.get = function (index) {
let node = this.dummyHead.next
let i = 0
while (node != null && i < index) {
node = node.next
i += 1
}
if (i == index && node != null) {
return node.val
}
return -1
};
MyLinkedList.prototype.addAtHead = function (val) {
const node = new ListNode(val)
node.next = this.dummyHead.next
this.dummyHead.next = node
};
MyLinkedList.prototype.addAtTail = function (val) {
let node = this.dummyHead
while (node.next != null) {
node = node.next
}
node.next = new ListNode(val)
};
MyLinkedList.prototype.addAtIndex = function (index, val) {
let node = this.dummyHead
let i = 0
while (node.next != null && i < index) {
node = node.next
i += 1
}
if (i == index) {
const newNode = new ListNode(val);
newNode.next = node.next;
node.next = newNode;
}
};
MyLinkedList.prototype.deleteAtIndex = function (index) {
let node = this.dummyHead
let i = 0
while (node.next != null && i < index) {
node = node.next
i += 1
}
if (i == index && node.next != null) {
node.next = node.next.next
}
};
C# #
public class ListNode
{
public int val;
public ListNode next;
public ListNode(int val)
{
this.val = val;
}
}
public class MyLinkedList
{
ListNode dummyHead = new ListNode(0);
public MyLinkedList() {}
public int Get(int index)
{
var node = dummyHead.next;
int i = 0;
while (node != null && i < index)
{
node = node.next;
i += 1;
}
if (i == index && node != null)
return node.val;
return -1;
}
public void AddAtHead(int val)
{
var node = new ListNode(val);
node.next = dummyHead.next;
dummyHead.next = node;
}
public void AddAtTail(int val)
{
var node = dummyHead;
while (node.next != null)
node = node.next;
node.next = new ListNode(val);
}
public void AddAtIndex(int index, int val)
{
var node = dummyHead;
int i = 0;
while (node.next != null && i < index)
{
node = node.next;
i += 1;
}
if (i == index) {
var newNode = new ListNode(val);
newNode.next = node.next;
node.next = newNode;
}
}
public void DeleteAtIndex(int index)
{
var node = dummyHead;
int i = 0;
while (node.next != null && i < index)
{
node = node.next;
i += 1;
}
if (i == index && node.next != null)
node.next = node.next.next;
}
}
Go #
// ListNode represents a node in the singly-linked list
// type ListNode struct {
// Val int
// Next *ListNode
// }
// MyLinkedList implements linked list operations using a dummy head node
type MyLinkedList struct {
dummyHead *ListNode
}
// Constructor initializes a new linked list
func Constructor() MyLinkedList {
return MyLinkedList{
dummyHead: &ListNode{}, // Initialize dummy head with zero value
}
}
// Get retrieves the value at specified index, returns -1 for invalid indices
func (ll *MyLinkedList) Get(index int) int {
current := ll.dummyHead.Next
count := 0
// Traverse until reaching desired index or end of list
for current != nil && count < index {
current = current.Next
count++
}
// Validate index and return value if found
if current != nil && count == index {
return current.Val
}
return -1
}
// AddAtHead inserts new node at beginning of the list
func (ll *MyLinkedList) AddAtHead(val int) {
newNode := &ListNode{Val: val}
newNode.Next = ll.dummyHead.Next
ll.dummyHead.Next = newNode
}
// AddAtTail appends new node at end of the list
func (ll *MyLinkedList) AddAtTail(val int) {
current := ll.dummyHead
// Traverse to last node
for current.Next != nil {
current = current.Next
}
current.Next = &ListNode{Val: val}
}
// AddAtIndex inserts node at specified position if valid
func (ll *MyLinkedList) AddAtIndex(index int, val int) {
prev := ll.dummyHead
count := 0
// Find insertion point
for prev.Next != nil && count < index {
prev = prev.Next
count++
}
// Only insert if index matches traversal count
if count == index {
newNode := &ListNode{Val: val}
newNode.Next = prev.Next
prev.Next = newNode
}
}
// DeleteAtIndex removes node at specified position if valid
func (ll *MyLinkedList) DeleteAtIndex(index int) {
prev := ll.dummyHead
count := 0
// Find node preceding the deletion target
for prev.Next != nil && count < index {
prev = prev.Next
count++
}
// Perform deletion if index is valid and node exists
if prev.Next != nil && count == index {
prev.Next = prev.Next.Next
}
}
C++ #
class MyLinkedList {
private:
struct ListNode {
int val;
ListNode* next;
ListNode(int x) : val(x), next(nullptr) {}
};
ListNode* dummy_head_;
public:
MyLinkedList() {
dummy_head_ = new ListNode(0);
}
int get(int index) {
auto node = dummy_head_->next;
auto i = 0;
while (node && i < index) {
node = node->next;
i++;
}
return (i == index && node) ? node->val : -1;
}
void addAtHead(int val) {
auto node = new ListNode(val);
node->next = dummy_head_->next;
dummy_head_->next = node;
}
void addAtTail(int val) {
auto node = dummy_head_;
while (node->next) {
node = node->next;
}
node->next = new ListNode(val);
}
void addAtIndex(int index, int val) {
auto node = dummy_head_;
auto i = 0;
while (node->next && i < index) {
node = node->next;
i++;
}
if (i == index) {
auto new_node = new ListNode(val);
new_node->next = node->next;
node->next = new_node;
}
}
void deleteAtIndex(int index) {
auto node = dummy_head_;
auto i = 0;
while (node->next && i < index) {
node = node->next;
i++;
}
if (i == index && node->next) {
auto to_delete = node->next;
node->next = node->next->next;
delete to_delete;
}
}
};
Ruby #
# ListNode class with val and next_node (since 'next' is reserved in some languages)
class ListNode
attr_accessor :val, :next_node
def initialize(val = nil)
@val = val
@next_node = nil
end
end
# MyLinkedList implementation with dummy head
class MyLinkedList
def initialize
@dummy_head = ListNode.new # Dummy head node
end
# Get value at index, return -1 if invalid
def get(index)
current = @dummy_head.next_node
count = 0
while current && count < index
current = current.next_node
count += 1
end
current && count == index ? current.val : -1
end
# Add node at head
def add_at_head(val)
new_node = ListNode.new(val)
new_node.next_node = @dummy_head.next_node
@dummy_head.next_node = new_node
end
# Add node at tail
def add_at_tail(val)
current = @dummy_head
while current.next_node
current = current.next_node
end
current.next_node = ListNode.new(val)
end
# Add node at index if valid
def add_at_index(index, val)
prev = @dummy_head
count = 0
while prev.next_node && count < index
prev = prev.next_node
count += 1
end
if count == index
new_node = ListNode.new(val)
new_node.next_node = prev.next_node
prev.next_node = new_node
end
end
# Delete node at index if valid
def delete_at_index(index)
prev = @dummy_head
count = 0
while prev.next_node && count < index
prev = prev.next_node
count += 1
end
if prev.next_node && count == index
prev.next_node = prev.next_node.next_node
end
end
end