力扣链接:15. 三数之和,难度:中等。
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为 0
且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入: nums = [-1,0,1,2,-1,-4]
输出: [[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入: nums = [0,1,1]
输出: []
解释: 唯一可能的三元组和不为 0 。
示例 3:
输入: nums = [0,0,0]
输出: [[0,0,0]]
解释: 唯一可能的三元组和为 0 。
约束:
3 <= nums.length <= 3000
-10^5 <= nums[i] <= 10^5
提示 1
So, we essentially need to find three numbers x
, y
, and z
such that they add up to the given value. If we fix one of the numbers say x
, we are left with the two-sum problem at hand!
提示 2
For the two-sum problem, if we fix one of the numbers, say x
, we have to scan the entire array to find the next number y
, which is value - x
where value is the input parameter. Can we change our array somehow so that this search becomes faster?
提示 3
The second train of thought for two-sum is, without changing the array, can we use additional space somehow? Like maybe a hash map to speed up the search?
思路
- 三个数相加等于0,等同于
两个数相加的和
等于负的第三个数
。 - 有两种方案可供选择:
- 先定下一个数,然后查找另外两个数。
- 先定下两个数,然后查找第三个数。
- 如果选择
方案2
,需要用到Map
。因为需要对nums
去重复;在Map
中查找第三个数
时,还需要避开已经定下的两个数
,实现起来会比较麻烦。 - 如果选择
方案1
,查找另外两个数时,需要用到双指针
算法。 - 对于
方案2
,仅给出了Python
示例代码。下文重点讲方案1
。
步骤
- 对
nums
进行排序。 - 遍历
nums
。 伪代码:
for (i = 0; i < nums.length; i++) { left = i + 1 right = nums.length - 1 while (left < right) { if (condition1) { left += 1 } else (condition2) { right -= 1 } } }
复杂度
时间复杂度
O(N * N)
空间复杂度
O(N)
Python #
# If you want the program to run faster, uncomment the two places in the code.
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
nums.sort()
# nums_2 = []
# for i, num in enumerate(nums):
# if i >= 3 and num == nums[i - 1] == nums[i - 2] == nums[i - 3]:
# continue
# nums_2.append(num)
# nums = nums_2
results = set()
for i, num in enumerate(nums[:len(nums) - 2]):
# if num > 0:
# break
left = i + 1
right = len(nums) - 1
while left < right:
sum_ = nums[left] + nums[right]
if sum_ == -num:
results.add((num, nums[left], nums[right]))
left += 1
elif sum_ > -num:
right -= 1
else:
left += 1
return list(results)
Ruby #
# @param {Integer[]} nums
# @return {Integer[][]}
def three_sum(nums)
nums.sort!
results = Set.new
nums_2 = []
nums.each_with_index do |num, i|
next if i >= 3 && num == nums[i - 1] && num == nums[i - 2] && num == nums[i - 3]
nums_2.append(num)
end
nums = nums_2
# Iterate through each number as potential first element
(0...nums.length - 2).each do |i|
break if nums[i] > 0
left = i + 1
right = nums.length - 1
# Two-pointer approach for remaining elements
while left < right
current_sum = nums[i] + nums[left] + nums[right]
if current_sum == 0
# Add sorted triplet to avoid duplicates
results.add([nums[i], nums[left], nums[right]])
left += 1
right -= 1
elsif current_sum < 0
left += 1 # Need larger sum
else
right -= 1 # Need smaller sum
end
end
end
results.to_a
end
Go #
func threeSum(nums []int) [][]int {
sort.Ints(nums)
nums2 := make([]int, 0)
for i, num := range nums {
if i >= 3 && num == nums[i-1] && nums[i-1] == nums[i-2] && nums[i-2] == nums[i-3] {
continue
}
nums2 = append(nums2, num)
}
nums = nums2
results := make([][]int, 0)
seen := make(map[string]bool)
for i := 0; i < len(nums)-2; i++ {
// if nums[i] > 0 {
// break
// }
left := i + 1
right := len(nums) - 1
for left < right {
sum := nums[left] + nums[right]
if sum == -nums[i] {
triplet := []int{nums[i], nums[left], nums[right]}
key := fmt.Sprintf("%d,%d,%d", triplet[0], triplet[1], triplet[2])
if !seen[key] {
results = append(results, triplet)
seen[key] = true
}
left++
} else if sum > -nums[i] {
right--
} else {
left++
}
}
}
return results
}
C++ #
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
sort(nums.begin(), nums.end());
// Uncomment to speed up
// vector<int> nums2;
// for (int i = 0; i < nums.size(); i++) {
// if (i >= 3 && nums[i] == nums[i-1] && nums[i-1] == nums[i-2] &&
// nums[i-2] == nums[i-3]) {
// continue;
// }
// nums2.push_back(nums[i]);
// }
// nums = nums2;
vector<vector<int>> results;
set<vector<int>> seen;
for (int i = 0; i < nums.size() - 2; i++) {
// Uncomment to speed up
// if (nums[i] > 0) {
// break;
// }
int left = i + 1;
int right = nums.size() - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == -nums[i]) {
vector<int> triplet = {nums[i], nums[left], nums[right]};
if (seen.find(triplet) == seen.end()) {
results.push_back(triplet);
seen.insert(triplet);
}
left++;
} else if (sum > -nums[i]) {
right--;
} else {
left++;
}
}
}
return results;
}
};
JavaScript #
/**
* @param {number[]} nums
* @return {number[][]}
*/
var threeSum = function(nums) {
nums.sort((a, b) => a - b);
// Uncomment to speed up
// let nums2 = [];
// for (let i = 0; i < nums.length; i++) {
// if (i >= 3 && nums[i] === nums[i-1] && nums[i-1] === nums[i-2] && nums[i-2] === nums[i-3]) {
// continue;
// }
// nums2.push(nums[i]);
// }
// nums = nums2;
const results = [];
const seen = new Set();
for (let i = 0; i < nums.length - 2; i++) {
// Uncomment to speed up
// if (nums[i] > 0) {
// break;
// }
let left = i + 1;
let right = nums.length - 1;
while (left < right) {
const sum = nums[left] + nums[right];
if (sum === -nums[i]) {
const triplet = [nums[i], nums[left], nums[right]];
const key = triplet.join(',');
if (!seen.has(key)) {
results.push(triplet);
seen.add(key);
}
left++;
} else if (sum > -nums[i]) {
right--;
} else {
left++;
}
}
}
return results;
};
C# #
public class Solution {
public IList<IList<int>> ThreeSum(int[] nums) {
Array.Sort(nums);
// Uncomment to speed up
// var nums2 = new List<int>();
// for (int i = 0; i < nums.Length; i++) {
// if (i >= 3 && nums[i] == nums[i-1] && nums[i-1] == nums[i-2] && nums[i-2] == nums[i-3]) {
// continue;
// }
// nums2.Add(nums[i]);
// }
// nums = nums2.ToArray();
var results = new List<IList<int>>();
var seen = new HashSet<string>();
for (int i = 0; i < nums.Length - 2; i++) {
// Uncomment to speed up
// if (nums[i] > 0) {
// break;
// }
int left = i + 1;
int right = nums.Length - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == -nums[i]) {
var triplet = new List<int> { nums[i], nums[left], nums[right] };
string key = string.Join(",", triplet);
if (!seen.Contains(key)) {
results.Add(triplet);
seen.Add(key);
}
left++;
} else if (sum > -nums[i]) {
right--;
} else {
left++;
}
}
}
return results;
}
}
Java #
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
// Uncomment to speed up
// List<Integer> nums2 = new ArrayList<>();
// for (int i = 0; i < nums.length; i++) {
// if (i >= 3 && nums[i] == nums[i-1] && nums[i-1] == nums[i-2] && nums[i-2] == nums[i-3]) {
// continue;
// }
// nums2.add(nums[i]);
// }
// nums = nums2.stream().mapToInt(i -> i).toArray();
List<List<Integer>> results = new ArrayList<>();
var seen = new HashSet<>();
for (int i = 0; i < nums.length - 2; i++) {
// Uncomment to speed up
// if (nums[i] > 0) {
// break;
// }
int left = i + 1;
int right = nums.length - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == -nums[i]) {
List<Integer> triplet = Arrays.asList(nums[i], nums[left], nums[right]);
if (!seen.contains(triplet)) {
results.add(triplet);
seen.add(triplet);
}
left++;
} else if (sum > -nums[i]) {
right--;
} else {
left++;
}
}
}
return results;
}
}
其它语言
欢迎贡献代码到我们的 GitHub 仓库,非常感谢!本题解位置在 15. 三数之和。题解2的思路:使用 Map(慢而复杂)
请参考题解1
的思路,本处仅给出代码,用来解释为什么使用 Map
不是一个好办法。
复杂度
时间复杂度
O(N * N)
空间复杂度
O(N)
Python #
# from collections import defaultdict
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
nums = duplicate_removed_nums(nums)
results = set()
num_to_indices = defaultdict(list)
for i, num in enumerate(nums):
num_to_indices[num].append(i)
for i in range(len(nums) - 1):
for j in range(i + 1, len(nums)):
if -(nums[i] + nums[j]) in num_to_indices:
for index in num_to_indices[-(nums[i] + nums[j])]:
if index not in (i, j):
result = [nums[i], nums[j], nums[index]]
result.sort()
results.add(tuple(result))
return list(results)
def duplicate_removed_nums(nums):
num_to_count = defaultdict(int)
for i, num in enumerate(nums):
if num_to_count[num] <= 2 or (num_to_count[num] <= 3 and num == 0):
num_to_count[num] += 1
new_nums = []
for num in num_to_count:
new_nums.extend([num] * num_to_count[num])
return new_nums