# 53. Maximum Subarray - LeetCode Best Practices Visit original link: [53. Maximum Subarray - LeetCode Best Practices](https://leetcoder.net/en/leetcode/53-maximum-subarray) for a better experience! LeetCode link: [53. Maximum Subarray](https://leetcode.com/problems/maximum-subarray), difficulty: **Medium**. ## LeetCode description of "53. Maximum Subarray" Given an integer array `nums`, find the `subarray` with the largest sum, and return its sum. ### [Example 1] **Input**: `nums = [-2,1,-3,4,-1,2,1,-5,4]` **Output**: `6` **Explanation**:
The subarray [4,-1,2,1] has the largest sum 6.
### [Example 2] **Input**: `nums = [1]` **Output**: `1` **Explanation**: `The subarray [1] has the largest sum 1.` ### [Example 3] **Input**: `nums = [5,4,-1,7,8]` **Output**: `23` **Explanation**:The subarray [5,4,-1,7,8] has the largest sum 23.
### [Constraints] - `1 <= nums.length <= 10^5` - `-10^4 <= nums[i] <= 10^4` ## Intuition 1 - This problem can be solved by using `Greedy Algorithm` (please see `solution 2`), but here we will use another way. - Imagine the size of nums is `i`, let us consider if the same question is applied to the `subarray` of `nums` from index `0` to `i - 1`. - The answer is `yes`. Then let us think if the `i - 1`'s answer could impact the answer of `i`. - The answer is still `yes`. What would be the impact? - For `nums[i]`, 1. If the `previous sum` is negative, we can discard `previous sum`; 2. If the `previous sum` is positive, we can add `previous sum` to the `current sum`. - So we can use `Dynamic Programming` to solve the problem. The characteristic of the "Dynamic Programming" algorithm is that the value of `dp[i]` is converted from `dp[i - 1]`. ## Steps ### Common steps in dynamic programming These five steps are a pattern for solving `dynamic programming` problems. 1. Determine the **meaning** of the `dp[i]` - At first, try to use the problem's `return` value as the value of `dp[i]` to determine the meaning of `dp[i]`. If it doesn't work, try another way. - Imagine that `dp[i]` represents the `largest sum` at index `i`. Is this okay? mark-detail `dp[i + 1]` cannot be calculated by `dp[i]`. So we have to change the meaning. mark-detail - How to design it? mark-detail If `dp[i]` represents the `current sum` at index `i`, `dp[i + 1]` can be calculated by `dp[i]`. Finally, we can see that the `maximum sum` is recorded in the `current sum` array. mark-detail 2. Determine the `dp` array's initial value - Use an example: ```ruby nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] dp = [-2, 1, -3, 4, -1, 2, 1, -5, 4] ``` - `dp[i] = nums[i]` would be good. 3. Determine the `dp` array's recurrence formula - Try to complete the `dp` array. In the process, you will get inspiration to derive the formula. ```ruby nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] dp = [-2, 1, N, N, N, N, N, N, N] # N means don't pay attention to it now dp = [-2, 1, -2, N, N, N, N, N, N] dp = [-2, 1, -2, 4, N, N, N, N, N] dp = [-2, 1, -2, 4, 3, N, N, N, N] dp = [-2, 1, -2, 4, 3, 5, N, N, N] dp = [-2, 1, -2, 4, 3, 5, 6, N, N] dp = [-2, 1, -2, 4, 3, 5, 6, 1, N] dp = [-2, 1, -2, 4, 3, 5, 6, 1, 5] ``` - After analyzing the sample `dp` array, we can derive the `Recurrence Formula`: ```python dp[i] = max(nums[i], dp[i - 1] + nums[i]) ``` 4. Determine the `dp` array's traversal order - `dp[i]` depends on `dp[i - 1]`, so we should traverse the `dp` array from left to right. 5. Check the `dp` array's value - Print the `dp` to see if it is as expected. ## Complexity - Time complexity: `O(n)`. - Space complexity: `O(n)`. ## Python ```python class Solution: def maxSubArray(self, nums: List[int]) -> int: dp = nums.copy() for i in range(1, len(dp)): dp[i] = max(nums[i], dp[i - 1] + nums[i]) return max(dp) ``` ## Java ```java class Solution { public int maxSubArray(int[] nums) { var dp = nums.clone(); for (var i = 1; i < dp.length; i++) { dp[i] = Math.max(nums[i], dp[i - 1] + nums[i]); } return IntStream.of(dp).max().getAsInt(); // if you want to beat 99%, refer to C# soluiton's comment } } ``` ## JavaScript ```javascript var maxSubArray = function (nums) { const dp = [...nums] for (let i = 1; i < dp.length; i++) { dp[i] = Math.max(nums[i], dp[i - 1] + nums[i]) } return Math.max(...dp) }; ``` ## Go ```go func maxSubArray(nums []int) int { dp := slices.Clone(nums) for i := 1; i < len(nums); i++ { dp[i] = max(nums[i], dp[i - 1] + nums[i]) } return slices.Max(dp) } ``` ## Ruby ```ruby def max_sub_array(nums) dp = nums.clone (1...dp.size).each do |i| dp[i] = [ nums[i], dp[i - 1] + nums[i] ].max end dp.max end ``` ## C# ```csharp public class Solution { public int MaxSubArray(int[] nums) { var dp = (int[])nums.Clone(); for (var i = 1; i < dp.Length; i++) { dp[i] = Math.Max(nums[i], dp[i - 1] + nums[i]); } return dp.Max(); // if you want to beat 99%, you can use a variable to collect the maximum value: `if (dp[i] > result) result = dp[i];` } } ``` ## C++ ```cpp class Solution { public: int maxSubArray(vector